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1.0 Introduction

The idea that data models can be equivalent to one another and the
belief that the cost of (expensive) conversion between database management
systems can be achieved automatically are not new. Indeed the concept of
the universal language and of ease of translation across languages arose
early in modern computing history. However, one of the most elusive parts
is in finding a model that allows such translation— for it must be general
enough to cover all such systems.

In searching for methods of data representation, data semantics,
and consequently methods of translation, the authors started to work on a
data model processor that could provide a framework for testing data models
as well as allow development of a data model theory. This report provides
a short history of the project, as well as stating some of the most recent
concepts, and finally makes some suggestions for future development.

2.0 Data Model Definitions and Concepts

During the past five years, there has been a coordinated data
model study group in the Department of Information Systems Management at
the University of Maryland. The work of this group commenced when Hardgrave
worked with Childs (ref. 1) in understanding the theory and applicability
of Extended Set Theory. This led Hardgrave to starting an implementation
of the concept using integer sets (ref. 2) and then in expanding this into
positional set notation (ref. 3) for defining data models. The work re-
quired both the introduction of new implementation methods as well as some
theoretical considerations.

During several working sessions in 1975, Rothnie and Sibley worked
with Hardgrave in considering the concepts of data, data models, and the
needs of large scale distributed database systems. This led to several new |
ideas expressed in reference 4, and this formed a basis for further work, %
some of which is reported here.

One of the major difficulties with writing about data models and
their theory is the need for a concise definition and understanding on the
part of the reader. The jargon of data management is notoriously poorly
defined, with many words being used for the same (or similar) concepts and
many concepts being called by the same word. In fact, one of our goals has
been to provide a notation and framework that encourages precise mathemat-
ical definition of data modelling concepts. Unfortunately, such discussion
is extremely difficult (if not impossible) to condense. This has led to
several extremely long papers (ref. 5, 6, 7, and 8), and even these have
not been independent.

Our recent work has taken three important steps:
i) The implementation, simulation, and improvement of a real
positional set processor-PSP (ref. 7).
ii) The theoretical framework of data models, and the provision of
?n augmsnted PSP that can test and support several data models
ref. 8).
iii) The beginnings of work in the use of data model theory for the
development of a better understanding of underlying concepts
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that must be understood for future standardization of DBMS.
Some extracts from previous reports are now included for completeness.

2.1 The Basic Concepts of the Positional Set Processor

The notion of the positional set is the basic concept of the model
under consideration. We shall briefly review the material of as follows.

The construction
Ol % N T R R B

is a positional-set. The pairs may be called duplexes. We call P; the po-
sitional identifier (position). The positional identifier may be "null"
(denoted by #).

The component X; we call the value of the element (or simply the
element. The element can be atomic or the element value can be a positional
set; thus allowing a form of recursiveness.

The value of X; can be single-valued 1f
or multi-valued if
that is, there exist several duplexes with the same positional identifiers.

If
v [P=#]
then the positional set
o L R
is equivalent to the classical set
{ Xis Xas Ry ¢ov X5 b

P ]

n

The set : %
E X’ %% oo % ]

is a classical sequence.

Further, we shall use primitive sets, which are classical sets of
scalar values with different characteristics. The specific allowable con-
structs or sets of values are defined by the DBMS designer and are fixed in
the data language associated with the model under consideration. In parti-
cular, we shall normally need to use primitive integer sets and real sets,
character-strings of fixed and variable length, etc.

Some subset of the primitive sets we shall call the domain which
represents the possible set of values (v). This primitive set defines the
possible elementary values which are associated with one or more positional
identifiers; several positional identifiers of one or several positional
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sets can be associated with one domain (e.g., the domain TOWN may have PIDs
'RECEIVED FROM' and 'SENT TO'). The domain can be implicit or enumerated.
An implicit domain is defined by giving the primitive set and the subsetting
criteria for this subset. Typically, a PICTURE specifies the domain. Such
criteria may be used by the DBMS as a domain integrity-constraint. For an
enumerated domain, elements are listed explicitly. This list of values may
also be used as an integrity-constraint.

Turning again to positional sets, we can see that data objects
associated with them are built recursively. We define the depth of recursion
of the atomic element to be zero. Then a positional set has recursion depth
k if the maximum depth of recursion of its elements is k-1.

The instance of a positional set or tunle is, by definition, a po-
sitional set which conforms to the definitional constraints. The set of all
instances of positional sets with the same schematic properties we may call
the named positional set (e.g., a PERSONNEL positional set).

Although the sequence is a particular case of a positional set,
there must be special specifications for this object, because it plays an
important role in the model under consideration. In the same way that we
distinguish a positional set according to its name and instance, we shall
distinguish the name of a sequence from its instance. A sequence can be
of fixed or variable length.

So, the positional set (sequence) may have an arbitrary level of
recursion. It consists of duplexes. A duplex consists of a position iden-
tifier and an element. The values of an element can be the instances of a
positional set of some type (sequence) or they may be atomic. The elemen-
tary value in this duplex can be single-valued or multi-valued. The con-
ceptual data-base is the collection of positional sets with given character-
istics.

The DBMS which uses such a conceptual model must have domain manip-
ulation facilities, the facilities for manipulating named positional sets,
their instances, duplexes, single-valued and multi-valued elements. Before
we consider the data-manipulation facilities more precisely, we shall dis-
cuss the functional specifications of the objects.

2.2 Data Model Theory

In reference 4 the authors defined a data model to be:

o A collection of objects (or abstract entities);

o A data definition capability for those objects—
presumably a stored structure describing objects; and

e A collection of operations that manipulate the objects
by referencing names in the data definition structure.

In reference 5 the authors refined this definition somewhat to include
specification of primitive sets from which other positional sets could be
defined. Our approach is consistent with reference 4. That is, a data
model must have specified as a minimum:

1. A collection of primitive sets.




2. A collection of objects (i.e., abstract entities).

The form of each object must be given in Positional-
Set-Notation (PSN). Further, the capability for
naming an object must be specified with an indication
of who (e.g., the end-user or the DBA) may name it.

3. A stored structure representing a data definition
capability. This structure must also be given in PSN;
it may be as complex as necessary.

4. A collection of operations that manipulate the objects
(usually) by referencing the data definition,

As an example, we have given a data model definition for the relational
model in reference 6.

3.0 Data Model Processor Concepts

The development of a Data Model Processor will be a significant
step towards a general understanding of data models. This research involves
several important parts: first. the development of a general framework for
tic spe o ification of Gata wodel . sceoondiy, tic specificacion of eacn dacd
model (e.g., DBTG, Relational, TDMS, IMS) within this framework; third, the
specification of query languages for each data model. Using this approach,
several query languages may be specified for a given data model. (The re-
lational systems may be considered to form one data model which has several
query languages, such as SEQUEL 2, QUEL, and QUERY-BY-EXAMPLE.) In the
fourth part of the research, it is necessary to define a method which allows
specification of mappings. Mappings across data-models must be possible,
as well as mappings within one data model. Each of these topics is now
discussed in some detail to show how far the research has currently progres-
sed.

To demonstrate the Data Model Processor approach, we must give pre-
cise formulations for a number of existing data models. In many cases, this
means augmenting (and sometimes altering) the original formulation. For
example, the original relational model does not provide a mechanism for de-
fining domains. Our mathematical approaches are not intended to be final;
but they are necessary to illustrate this approach.

3.1 The Data Model Processor (DMP)

We see the framework as an on-line interactive system that pro-
vides several options which are designed to support the study of data models.
The user of the DMP system would first encounter a "master menu" shown in
Figure 3-1.

Each option is associated with a role shown in Figure 3-2. The
person sitting at the terminal may play several different roles, but it is
important to distinguish between them when using the system— they provide
a means of controlling the model, its implementation, and use.

The Data-Model-Definer (DMD) has the most powerful role: indeed
it is the DMD who delegates authority to all other roles during part of the
data-model specification. The DMD specifies a data-model by:
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Figure 3-1: MASTER MENU
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Naming the concepts for the data-model;

Defining the stored-data-definition (in PSN) for each concept;
Defining the occurrence-structures (in PSN) for each concept;
Defining the primitive-operations; and

Specifying the source of each positional-set.

The meaning of "implementation" in this approach is not the tradi-
tional one. The DMD may specify that some sets are defined at implementa-
tion time: e.g., the set of real numbers usually depends on the hardware
architecture of a specific computer. This, and any number of other sets,
may be left to the "implementor" role.

The DBMS implementor (DI) of the data-model specifies these sets
and does nothing else. This approach forces the DI to be perfectly faithful
to the concepts set forth by the DMD. This is in marked contrast to the way
DBMS have been impiemented in the past. For example, in his original paper,
Codd (reference 9), playing the DMD role, specified that relations would
never have duplicate tuples; IBM's System-R group (reference 10), playing
the DI role, allowed duplicate tuples, except when explicitly removed by the
user. Such a conditicin cou’. no. accur unce * the OMP “rame.ork [ocauso it
gives the DMD absolute control over implementation.

i Once an implementation is available, a data-base may be defined
under a new role (DBD), then populated (DBP), and finally manipulated (DM).
The duties of the DBD and DBP roughly correspond to the duties of a data-
base administrator (DBA). Since this term is used in a number of different
contexts, it has been avoided in the definition of the DMP framework. z

The DMP approach also separates the notion of a data-model from the
notion of a query-language. The interface between the two is the collection
of primitive operations. The DMD specifies the primitive operations; the
QLD specifies the syntax of the query-language and a translation of the syn-
tax to the primitive operations. In section 3.3, more is given on this.

The DMP approach should also provide for the specification of map-

pings or transformations (through the DTD). So far, the mechanism for doing
this has not been developed.

3.2 Specification of Data Models

In this section, we discuss the specification of three data models:
DBTG, Relational, and TDMS. Each specification is currently several pages
long. Furthermore, the current specifications are preliminary and (in some
cases) incomplete. However, portions of each specification are given here
to illustrate how the data-model-processor would manage and manipulate these
specifications.

3.2.1 Data Model Underlying Concepts

The concepts of the (original) DBTG model are:

® AREAS
e RECORDS
e SETS.




The concepts of the Relational model are:

e OOMAINS (Explicit and Implicit)
o RELATIONS.

Explicit domains are defined by enumerating the legal values. Implicit do-
mains are defined by providing a defining predicate.
The concepts of the TDMS model are:

e COMPONENTS
e NODES
o INDEXES.

3.2.2 Stored Data Definitions

The Stored-Data-Definitions (SDD) for the DBTG, Relational, and
TDMS models are given in Figures 3.2-1, 3.2-2, and 3.2-3 respectively.

The TEMPLATE command of DMP allows specification of the general
form of a positional set. For example, the specification of RECORD-DEF in
Figure 3.2-1 states that DECORD-DEF is a (mathematical) set of tuples.
Each tuple has three position-identifiers: RECORD-NAME, AREA-MAME, and
DATA-ITEM., The structures D(I) at position DATA-ITEM are themselves sets
of tuples as specified in the subordinate TEMPLATE command.

Thus, in the DBTG model, each of the "concepts" (areas, records,
and sets) have stored-‘ata-definitions associated with them.

In our definition of the relatiornal model, both domains and rela-
tions have stored-data-definitions associated with them, however, actual
values may appear in XDOM-DEF making it similar in some ways to an occur-
rence structure.

3.2.3 Occurrence Structures

Figure 3.2-4 shows (some of) the occurrence structures for the
DBTG model. The currency indicators are an important collection because
the operations (e.g., FIND) depend on their values.

Figure 3.2-5 shows the occurrence structures for the Relational
model. This consists of a set of pairs: relation-name and relation. The
relation is itself a structure consisting of sets of tuples; the position-ids
of which must conform to some restrictions set forth in the stored-data-
definition. Here we will not discuss details needed for enforcing those
restrictions since they are likely to change in our next version.

Figure 3.2-6 shows one occurrence structure for the TDMS model:
the nodes. As discussed by Hardgrave in reference 11, the semantics of
TDMS operations are made in terms of manipulations of the nodes in the tree.
Another occurrence structure which may be included in the index structure
of TDMS., There is considerable debate amongst us over the inclusion of
index structures in the data model definitions. This is more controversial
in the TDMS model than in others. It may not, in fact, be resolved for some
time.
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Figure 3.2-2: RELATIONAL STORED DATA DEFINITION
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ENTER PeSETS:
TEMPLATE COMPe=DEF =

{0 DCIYAINUMBER, N(I)aNAME,T(I)ATYPE,K(I)IKEY,N(I)APICTURE,
P(I)DAPARENT) yoae)

WHERE
D(I) IS=IN COMP=NUMBERS,
N(I) IS=IN NAMES,
T(I) IS=IN TYPES,
K(I) IS=IN (°K°’,°NK°’)
P(I) IS=IN COMP=NUMBERS,
Q(I) IS=IN PICTURES?

Figure 3.2-3: TDMS STORED DATA DEFINITION
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Figure 3.2-4: DBTG OCCURRENCE STRUCTURES
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TEMPLATE NNDESe0QCC =

{INCI)INOCE=ID,P(I)ARGIN,UCI)AUP,D(I)ADOWN,R(T)ARIGHT,
VEI)IVALUES) peee}

WHERE
N(I) ISeIN
R(I) ISeIN
UCI) ISeIN
DCI) ISeIN
R(I) IS=IN

TEMPLATE(V(I)) = {(C(J)ACOMP=MUMBER, X (J)QVALUE),,.,}

WNHERE
C(J)
X(J)

NODES.
COMPeMNUMRERS,
NQCES,
NQODES,
NODES,

[S=IN COMPeNIUMBERS
IS=1N aTOMS

Figure 3.2-6: TDMS OCCURRENCE STRUCTURES




3.3 Query Lanquages

One important aspect of this work is the development of a framework
that encompasses query languages as well as data models. A recent study
under the contract (reference 11) shows that one query language syntax may
have several semantic interpretations (called query-philosophies) for a sin-
gle data model. The query language module of the Data Model Processor should
be general enough to handle this case. The work described here is still in
an early stage of development.

The query language module of the Data Model Processor requires the
following material for each query language:

e A GRAMMAR TABLE, and L
e A SEMANTIC TABLE for each query-philosophy.

The grammatical table (currently) consists of a collection of rules. Each
rule has a rule number, a match condition, a rewrite string, and a semantic
symbol. Figure 3.3-1 shows a GRAMMAR TABLE for the TDMS query syntax.

Metasymbols are enclosed in angle brackets: <,>. These are simi-
lar to metasymbols in BNG grammars except they have both syntactic and
semantic parts. The syntactic part is matched and rewritten in the normal
way; however, the semantic part is a name assigned to the positional-set
that is the current "mathematical value" of the expression. As the syntactic
grammar is parsed, the positional-set is "calculated" in parrallel. This is
done by referencing the appropriate semantic table using the SEMSYM field.
Figures 3.3-2 and 3.3-3 show the semantic tables for the form TDMS query-
philosophies.

DMP also provides a mechanism for testing queries after a data
model and query language are defined. Of course a test data-base must have
been defined and populated as well. Figures 3.3-4, 3.3-5, and 3.3-6 show
the processing of a query using this approach. The query and sample data
base are taken from reference 11.

4.0 Continuing Work

4.1 DMP at NBS

The Data Model Processor is currently being specified and a proto-
type will be implemented on The Experimental Computer Facility at the U.S.
National Bureau of Standards. Most of the work on DMP will be supported by
NBS under their research project on abstract data models.

4.2 Mappings

The definition and processing of mappings may be the most impor- !
tant aspect of the DMP design. A good mapping facility would allow DMP to

simulate ANSI/SPARC architecture and also provide a foundation for data-base
conversion and schema transformations. So far, very little work has been

done on this part of the DMP design, though the effort ultimately requires

this in order to be complete.
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SETw3AnS, TREE=mARS/T,TREE=RARS/Y,00T=R4RS, SEND

FNTER GRAMMATICAL COMSTRULCTS:

RULEs  MaTCH REARITE

{ EQINEIGEIGTILTILE <OIP/%1>

b €2())><C0P/73X><2(2)> CATT/2(1)><OP/8X><CVAL/Z2(2)>
3 CATT/8XD<CIP/2Y><CVAL/42> <EP/S(X)>

d <EF/5(1)> <COND/S(I)>
) SCOND/S(I)>ANDCCOMD/S(JI)> <COND/S(K)>
[ <COND/S(T)>0R <«COND/S(J)> <COND/S(K)>
7 NOT <COND/S(1)> <COND/S(K)>
8 ( <CCOND/S(I1)> ) <COiD/S(1)>
Q <€Z(1)> HAS <COND/S(I)> <COND/S(K)>
190 AUALTIFY WHERE <COND/S(I)> <AS/0>

11 FaMILY IS «<2(1)> <FM/T>

SEC

Figure 3.3-1: GRAMMAR TABLE FOR TDMS QUERIES
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ENTER SEMAMNTIC TA+4LES FORI SETeB3ARSS

CONSTRUCT QUTPULT

2S 3

EP S(x)
c1 S(X)
Ce S(K)
C3 S(K)
HC S(x)
SEND

ENTER UNTVERSES

SETe854ARS

S(1)

SUALIFY{SELECT(<aTT>, <c('P>,<VaL>)
INTER(S(I),S(JIN)
UNTRNESIT) o S(I))

RLCOYWP (UMIVERSE,3(1))

SUALIFY (ADJUST(<ATT>,S5(I1)))

UNION=ALL TYRE(T) FOR ALL T3

ENTER SEMAMTIC TABLE FOR TREEBARS/T:

CONSTRUCT QuTPUT

Q8 )

EP 3(K)
(ol S(x)
ce S(X)
c3 S(X)
NC S(K)
X T
REMD

TREE=RARS/T

QUALIFY(S(I1))
ADJUST(SELECT(<ATT>,<0P>,<VAL>),T)
INTER(S(I),S(J))

UNIONCESC(I),S(J))
QLCOMP(TYPE(T),S(1))

ADJUST (ADJUST(S(I),<aTT>»),T)
FAMILY(<ATTS)

Figure 3.3-2: SEMANTIC TABLES FOR TDMS-LIKE QUERIES (A)




ENTER SEMANTIC TaBLE FNR TREERARS/N:

CUMSTRUCT OQUTPUT TREE=RARS/N

QS ® SUALIFY(S(I))
EP S(K) SELECT(<4TT>,<0%>,<VAL>)
(). M LOA(S(1),8(J)):
S(K) INTERCADJUST(S(I) ) aDJURT(S(J) ™))
c2 M LCA(SCIY,S(J)Y
S(x) UNIONCANJUST(S(I) ™) ADJUSTI(S(J) M)
€3 S(K) RLCOMP (TYPE(RG(S(IN),S(I)
HC S(K) ADJUST(S(I),<aTT>)
$END

ENTER SEMANTIC TARLE FOR PONT.2ARS:

CONSTRUCT QUTPUT ROOT=BARS

QS (0] QUALIFY(S(I))

gEP S(K) ADJUST(SELECT(<ATT>,<dP>,<VAL>),1)
Cl S(K) INTER(S(I),S(J))

ce S(K) UNIONC(SC(I),8(J))

Cc3 S(K) RLCOMP(TYPEC(1),S(I))

HC S(K) S(I)

SEND

Figure 3.3-3: SEMANTIC TABLES FOR TDMS-LIKE QUERIES (B)
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SELECT OPTIONS R

TUTER
ENTER
ENTES

ANTER

ENTER
PIIMT

CCoN
£R
EP
EP
£EP
HC
nC
Ce

ct
€5

c1
N2

vo

NAME

OF DATA MODEL OR QUERY LANGUAGF:

NA4E JF BATAL BASEs COMPUTING EQUIPHENT
MAME OF GQUERY PHILOSOPMY: SET=RARS

QUERY s

JUALIFY wWHERE (( C11 Ew PHYSICS CR C12 GT S0) AND NOT
(C21 HAS C32 EQ PERTEC);

((C21 +AS C31 ER PRINTER) AND

NAME OF QUERY PHILQSOPHY: SETeRARS

TIVE FUNCTION STREAM ISt

ouyeuT
S(1)
S(2)
S(3)
S(4)
S(S)
S(s8)
S(7)

S(3)
S(9

FUNCTIONS

QUALTIFY (SELECT(C11,EQ,PHYSICS))
QUALIFY(SELECT(C12,67,59)
AUALTFY(SELECT(C31,EQ,PRINTER)
GUALIFY(SELECT(C32,EQ,PERTEC)
QUALIFY(ADJUST(C21,5(3)))
QUALIFY(ADJUST(C21,5(4)))
UNIOAN(S(1),8(2))

INTER(S(S),8(6))
RLCOMP (UNTIVERSE,S(8))

INTER(S(7),8(9))
5(10)

Figure 3.3-4:
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3L209

RESULT
{104,5,6,12,13,14,15)
13,9,10,11,20,21) '
(1,2,5,8,12,16) .
{1,5,13})
(l'alsialiaiaonlq)
{1,5,12,13,14,15}
(103/49/506+9) 6006015,
20,21)
‘1'50120000015)
‘2'3'“0&08'..0'1!’
1“'00.21)
{(23,4,6,9,10,11,20,21}
{3,4,609.10,11,20,21}

PROCESSING A QUERY (A)




sureld

QUERY PNILOS0OPHY: TIEE«RARS/T

ORIMITIVE FUNCTION STRIEAM IS

cow
£o
£En
€P
F£2
“C
~C
c2
ct
c3
cl
as

AUTRLT
$(1)
§(2)
5(3)
$(8)
3(5)
3(9%)
S(7)
sc8)
S(9)
5010)
s(1l)

FUnCTIONS RESULT
ADJUST(SELECT(C11,EQ,PHYSTCS),C31) (12,13}
ANJJST(SELECT(C12,6T7,50),C31) {20}
ADJUST(SELECT(C31{,EQ,PRINTER),C31) (12,16}
ADJUST(SELECT(C32,EQ,PERTECY,C31) {13}
A0JusT(anJusST(SC(¥),CR21),C31) {12,13,16,17)
ADJUST(ADJUST(S(4),C21),C3Y) (12,13)
UNTON(S(1),S(2)) {12,13,20}
INTER(S(S),S(8)) (12,13}
SLCOMPLTYPE(CR1),S(%)) {16,17,20}
INTER(S(7).8(9)) {20}
QUALIFY(3(10)) {3,11,20})

ENTER QUERY PHRILOSOPHY: TREE=3APS/N

PRIMITIVE FUNCTION STREAM IS

cCoNn
EP
ER
EP
gEP
=C
HC
ce

Cl

(=8
ct

98

~

sl daiih

QUTPUT
S(1)
S(2)
S(3)
S(4)
S(S)
$(8)

v

S(7)
)

s(8)
S(9)
M

$c10)
Scl1)

FUNCTIONS RESULT
SELECT(C11,EG,PHYSICS) 1)
SELECT(C12,6T,S0) {3}
SELECT(C31,EQ,PRINTER) (12,18}
SELECT(C32,EQ,PERTEC) (13}
AQJUST(S(3),C21) (5,8}
ADJUST(S(4),C1) (S}

ci1t

UNION(ADJUST(S(1),C11),A0JUST(S(2),C21)) (1,3}
|
INTERCADJUST(S(S),C21)»A0JUST(S(6),C21)) (S}

RLCOMP (TYPE(RG(S(R))),S(8)) (3,11}

celt

INTERCADJUST(S(T),C21),2DJU8T(S9),C21)) (11}
SUALTIFY(S(123)) {3,11,20,21)

Figure 3.3-5: PROCESSING A QUERY (B)
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FUTER QUERY PRILNSOPwY: R00TeH4RS

OQIMITIVE FUNCTINN STIEAV ISt

CON QUTRPUT  FUNCTIONS RESULT
£R S(1) ADJIIST(SELECT(CL1,EQ,PHYSICS) (1}

ER Se2) ADJUST(SELECT(C12,GT,50) (3)

EP SC3) ADJUST(SELECT(C3,EQ,PRINTER)) (1,2}
EP S(4) ADJUST(SELECT(C32,EG,PERTEC),CQ0) (1)

C SS) S(3) {1,2}
=C S(s) S(4) (1}

ce S¢7) UNTAON(SC(L),S(2)) {1,3)
(o s(8) INTER(S(S)Y,S(8)) {1

Cc3 S¢S]) RLCOYP(TYPE(CCOQ),S(8)) (2.3}
Ct S(190) INTER(S(7),8(9)) (3)

338 S(11) QUALTIFY(3(190)) {3,9,10,11,18,.,4421)

ENTER QUERY PMILOSIPHY: SEND
ENTER GUERY: SEND

En QF QUERY SESSION,

Figure 3.3-6: PROCESSING A QUERY (C)
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4.3 Standards

We are partly interested in DMP because of its implications for
data-base standards. This also makes it of interest to NBS, partly
because:

(1) Congress and OMB expect data-base standards for DDL, DML and
query facilities for Federal procurements to be available by 1985.

(2) The only data-model that is seriously being considered for
standardization is DBTG.

(3) A DBTG standard that ignores other data models may mislead
Federal users.

DMP would provide a general framework for standardization. First,
a precise definition of a data model could be developed and (eventually)
accepted as a means of work by standardization committees. Moreover, this
would not preclude the definition and eventual standardization of other data
models. Multiple query-languages may be defined (and standardized) as re-
quired. The mapping facility may also be used to determine definitively
whether two query languages (or data models) are equivalent.

4.4 Terminology

One of the most important results of OMP development will be the
precise definition of some current terms from data-base technology. Dif-
ferent authors use terms such as "attribute," "mapping," "data-base," and
"data-model" with similar but confusingly different meanings. Newcomers
to the field are often perplexed by the plethora of pseudo-defined terms.
The DMP development requires precise definitions for many of these and other
terms. Thus we hope to introduce a new precision in definition to this
field.
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